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ABSTRACT 

The instability of rates based on total 
enumeration of events, although not sampling 
error, may be thought of as being generated by 
random processes operating in the population. 
It is therefore necessary to use probability 
statistics to estimate a "true" rate to 
determine whether two rates based on total 

enumeration of events are different from one 
another. The binomial model has customarily 
been used to generate predicted variances on 
the basis of which such determinations are made. 
Using birth rates for five years from population 
units of various sizes from Taiwan, North 
Carolina, and Costa Rica, we obtained empirical 
estimates of variance in rates which are much 
larger than those predicted by the binomial 
model, even when corrections are made for time 
trends and unit effects. Some of the possible 
sources of the discrepancy in estimates are 
discussed. If the binomial model is used to 
test null hypotheses about the differences in 

such rates, non -conservative assertions will 
result. 

INTRODUCTION 

Social scientists and policy makers are 
often interested in observing changes in the 

rate of occurrence of events in discrete 
population aggregations. For example, one may 
be interested in knowing whether homicide rates 
in Pocono County are different for whites and 
non -whites, or whether the birth rate in a 

census tract in Manhattan has fallen during the 

last five years, or whether the motor vehicle 
accident rates in two counties are significantly 
different. Such rates are usually derived 

through complete enumeration of the events rather 
than sampling, and hence are not subject to 

sampling variations (errors). Thus, one may 

think that observed rates pretty much tell the 

"true" situation. It is well known, however, 

that the smaller the population base on which 
such a rate is compiled, the more unstable is 

the rate over time. 
The purpose of this paper is to show how 

the instability over time of such rates, although 
not sampling error, may be thought of as being 
generated by random processes operating in the 

population. Statistically speaking these 
events are the outcome of a random experiment. 
These outcomes (such as birth, death, accident) 
are subject to chance. Thus, the observed rate 
may deviate from the "true" rate. Such 
deviation is called random error. If the 

experiments are repeated, a measure of this 

random error can be obtained by obtaining the 

average deviation of the observed rates around 
a "true value ". Since in this case the 

experiments cannot be repeated, other procedures 
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have to be developed to obtain measured of random 
variation. This paper will describe some 
procedures based on empirical data of birth rates, 
but the same logic is applicable to the rate of 
occurrence of many events in a population. 

The considerations proposed here are 
important in many scientific and practical 
decisions concerning changes in rates. In the 

development of statistics for small areas, we 

need to consider the minimum sized population 
which will provide useful information. In the 

conduct of field experiments, the investigator 
often selects small population aggregates as 
units of "treatment." It is helpful to have a 

logic for the selection of the size of such 
units which takes into consideration the random 

errors in the rates of interest. Any city, 
considering whether some policy has been 
effective in changing rates of traffic accidents, 
crimes, fires, etc., is confronted with the same 
problems of determining whether the change in 

rates is "real ". 
Consider the following hypothetical data 

from a rural district in Costa Rica containing 

5,000 people, and having the following number of 
births in five consecutive years: 200, 175, 215, 

180, 160. For simplicity let us assume that 
these figures represent the true number of births 
which occurred. Question: is the birth rate in 

year five lower than in year one? On the face 

of it, it seems obvious that the answer is yes. 

But let us consider that this population contains 
perhaps 1,000 women of child -bearing age. In 

any one year about one in five gets pregnant. 

Which ones? Imagine that the process determing 
which women get pregnant is stochastic. Some 
will go through periods of non -exposure to risk, 

through illness, spouse -absence, etc. Among 

those exposed during the year, we can imagine 

pregnancy as a random gift. Whether the birth 
rate is actually lower in year five than in year 
one depends not only on the absolute difference 
between the two rates, but also on the random 
variation within the rates. 

Chiang and Lindert seem to have been the 
first to examine the statistical variations in 

such vital rates. They have examined random 
errors and sampling errors of death rates in a 

variety of situations. They state, "The random 

error is associated with experimentation, whereas 

sampling error is due to sampling. These two 
kinds of error have a subtle but important 

difference. An understanding of these errors 

and their difference is essential for the 
understanding of the standard error of a rate." 
Keyfitz2 has discussed the idea of statistical 
variations of some life table functions. Keyfitz3 
also discussed some measures of random deviations 
in crude death rates, and direct and indirect 

adjusted death rates under binomial and poisson 



conditions. Walsh4 and Wilson5 have also 
considered some measures of life table death rate 
and expectation of life at birth. Kupper and 
Klelnbaum° and Kupper7 have discussed testing 
equality of k indirect age- adjusted death rates 
from p(zk) populations in which they derive a 

measure of random variations of some functions 

of indirect age specific death rate under the 
binomial condition. Most of the estimates of 
measures of random deviation obtained in the 

above papers make use of binomial or poisson 
conditions and make several simplifying assump- 
tions to derive them. 

An empirical approach to the problem of 
random variation in vital rates was made by 
Spencer8. She considered the problem of the 
effect of size of population on variability of 
demographic data in a historical population. 
Suchindran et a1.9 approached the problem using 
Monte Carlo simulation techniques to obtain 
estimates of random variations in several 
fertility measures. 

These approaches to determining the random 
variation in demographic rates all assume that 
probability statistics may be used to estimate 
the "true" demographic rates. Quite often the 
binomial model is used to generate these "true" 
rates. This paper will compare 
estimates of variability generated by the binomial 
model with variations found in actual birth rate 
data to determine how accurate a predictor the 
binomial model is. 

DATA SOURCES AND RESULTS 

Selection of Data 
The birth rate data come from three separate 

sources. Annual data for small units were 
available from North Carolina, Taiwan, and Costa 
Rica for the 1968 -1972 period.10 These three 
countries were selected because they had 
accurate birth rate data for areas as small as 

5,000 in population. Seven population size 
categories were selected: (1) 0- 5,000; 
(2) 5-10,000; (3) 10- 15,000; (4) 15- 20,000 
(5) 20- 30,000; (6) 30- 40,000; (7) 40- 50,000. 

Data from fifty-seven cantons in Costa 
Rica which fell in the 0- 50,000 population range 
in 1968 were used. Originally sixty-two cantons 
were in this range, but five had to be omitted 
due to geographic subdivisions during the 1968- 
1972 period. Data from the four precincts in 

Taiwan which had at least one township in the 

0 -5,000 population range were used. This 
resulted in data from ninety -one townships in 

Taiwan. 
In North Carolina, birth rates were 

available for whites only, non -whites only, and 

total combining whites and non -whites. Data for 

the 0 -5,000 population category were based only 

on non -whites, since white populations exceeded 
5,000 in almost all of the counties. Data for 

the other six categories were based on total 

rates combining whites and nonwhites. Thus, 

twenty -two counties using nonwhite birth rates 

only constituted the 0 -5,000 category, while 
sixty-six counties combining white and nonwhite 
rates were used in the other six population 
categories. 
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Estimates Under the Binomial Model 

Table 1 presents a summary of the estimated 
standard errors based on the binomial model. For 

each population size category, a mean population 
(N) was calculated by averaging the 1970 p 

population of all units within that category. 
The estimated value of the binomial parameter 
(ß) for each category was calculated by averaging 

the crude birth rates over the five year time 
period of all units within that category. The 

standard error of the birth rate for each 

category was then estimated using the formula, 
o= -p), where p is the estimated value of the 

N 

binomial parameter. 
As expected, the estimated standard errors 

decrease as the population size increases. 
Within each specific population size category, 
North Carolina shows the smallest estimated 
error (except for the 0 -5,000 category). 

Coefficients of variation were calculated 
by dividing the estimated standard error of 
each category by the average crude birth rate 
for that category. These coefficients,also 
decrease as the population size increases. The 

coefficients of variation for North Carolina are 
higher than those for Taiwan or Costa Rica, 

because the crude birth rate is lower in North 
Carolina than in the other two countries. The 
estimated coefficients of variation for Taiwan 

and Costa Rica are very similar. 

Observed Standard Errors of Birth Rates 

Standard errors based on observed birth 

rate data from these three countries were 

calculated next. Assuming time homogeneity, the 

variance in crude birth rate for each individual 

unit over the five year time period was calculated 
(Appendix A, Formula A -1). Next the average 

variance for each population size category was 

calculated by averaging the variances of the 
units within that category under the assumption 

that rates are unit homogeneous (Appendix A, 

Formula A-3). Finally, the standard error for 

each category was calculated by taking the 
square root of the average variance for that 

category. These standard errors and their 

corresponding coefficients of variation are 

presented in Table 2. 

Coefficients of variation based on this 

analysis generally decrease as the population 

size increases, but there are a number of 

exceptions (for example, in Costa Rica at the 

20- 30,000 level and the 40- 50,000 level). The 

standard errors and coefficients of variation 

generated from these observed rates are much 

higher than those that were generated using the 

binomial distribution. 

Observed Standard Errors of Estimate Eliminating 

Linear Trends 
Since there appeared to be a generally 

decreasing trend for the birth rates over the 

years observed, a re- analysis was performed. In 

this analysis, linear trends were eliminated by 

fitting straight line regressions (Appendix A, 

Assumption 3). Separate regression lines were 

fitted for each unit within a population size 
category, and the mean square error for the 

deviation from the regression line was calculated 



for each unit. The mean square errors of the 
units within each population size category were 
then averaged. The standard error of the 

estimate for each category was then determined 
by taking the square root of the average mean 
square error for that category. The results of 
this analysis are presented in Table 3. 

Elimination of linear trends brought about 
significant reductions in the size of the 
standard errors of the estimate as compared to 
the observed standard errors. These reductions 
are greater in Taiwan and Costa Rica than in 

North Carolina. Similarly, the coefficients of 
variation based on the standard errors of the 
estimate eliminating linear trends are reduced 
compared to those based on observed standard 
errors. Despite this reduction, these 
coefficients of variation and standard errors 
of the estimate are still consistently higher 
than those predicted from the binomial model. 

Estimates Using Two -way Analysis of Variance 
The estimates derived so far have assumed 

homogeneity of the units within a population 
category. Under this assumption we have 

averaged the within unit variation to get a 

single index of variation. However, when the 

assumption of homogeneity of units is not 

satisfied, the true variance of rates will be 

over -estimated. On the other hand, the process 

of obtaining separate variances for each unit 

and then averaging the variances usually results 
in a reduced estimate of the variance compared 
to the one obtained by taking a single estimate 
of variance ignoring the unit classification. 
These two biases have conflicting effects 
which may not balance one another. 

In order to eliminate both biases, it was 

decided to re- analyze the data eliminating the 
assumption of homogeneity of units and the 

averaging procedure. In this new procedure, a 

two way analysis of variance was performed with 

time and units as the two factors. (Appendix 
A, Assumption 4). This analysis of variance 
gives an estimate of the random variation in 

the rates after eliminating the unit and time 

variations from the total variation. The 
procedure also allows for testing for trends 
in time effects, and the deletion of variance 

associated with linear, quadratic, and cubic 
time trends. 

The analysis was carried out only for 

Taiwan and the results are presented in Table 
4. This analysis revealed that there were 
significant differences among the units for 

all the population categories considered. The 

results also showed that apart from significant 

linear time trends in all categories, there 
were four categories with significant quadratic 
effects and four categories with significant 
cubic effects. The standard error for a given 

category presented in Table 4 was obtained by 
taking the square root of the mean square 

error for that particular category. 
The coefficients of variation in Table 4 

show a pattern of decline (with some exceptions) 
as the population size increases. The estimates 
in general are larger than the estimates based 
on the binomial model (Table 1) and smaller than 
the observed standard errors (Table 2). A 
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comparison of the rates for Taiwan in Tables 3 
and 4 shows that the two -way analysis of 
variance procedure gives smaller estimates in the 
smaller population size categories and larger 
estimates in the larger population size categories. 

DISCUSSION 

The variances generated by actual data 
consistently display larger values than those 

predicted by the binomial model for hypothetical 

populations. We have explored some possible 
reasons for the over -estimates, but found them 

unhelpful in reducing the discrepancy. There 

are other possible reasons which need exploration 
1. The binomial model predicts the variance 

for an infinite number of replications, while 

we have relatively small numbers of replications 
available. However, if this were the primary 
explanation, then the discrepancy between the 
predicted and the obtained variance should be 
inversely proportional to the number of 
replications available. This is not the case, as 

can be seen from comparison of Tables 1 and 3. 

2. We have used crude birth rates, which 
include in the denominator all persons in the 

population. However, not everyone in the 

population is at risk of birth. Denominators 
should include only the number of women at risk 

of birth. Birth rates per thousand women at 

risk would have been preferable, but we did not 
have these data available. However, this cannot 

explain the discrepancies. Assuming that 
perhaps the number of women at risk is one -fifth 

the number of persons in the population, we 

would use the reduced denominators in both the 

empirical estimates and the binomial estimates. 
The discrepancies would be exactly the same 

size, but the size of population to which they 

applied would be one -fifth as large. 

3. The mean square error of the crude 

birth rate (which is the square of the standard 

error of the estimate) is equal to the true 

error plus the correlation between error and 
time. If there is a correlation between error 

and time (a circumstance which we can rarely 
evaluate), the standard error of the estimate 

would be slightly larger than the true error.. 

4. The simple binomial model assumes that 

every woman is at the same risk of birth. Surely 

this is an erroneous assumption. If one assumes 

that the risk of birth varies, then the simple 
binomial model will underestimate the variance 

in birth rates. Consider the following example. 

Suppose a population of 1,000 women with 

the probability (p) of a birth in a year of .01. 

Assuming p is constant for all women, the 

expected number of births in a year is 10, and 

the variance is equal to 1,000 x .01x.99 =9.9, or 

variance in the birth rate of 9.9/1,000. Now 

assume that p varies among women with a mean of 
.01, and a variance of only .00001. The expected 
number of births is still 10, but the variance is 

now 19.9/1,000. (See Appendix B for the 
equation). By adding a very small variance to 
p, we have more than doubled the variance in the 
birth rate. 

If we could decompose any population into 
sub -populations with the same probability of 
experiencing the criterion event, our estimates 



would probably more closely approach those 
predicted by the binomial model. But from a 

practical point of view, this observation is of 
little assistance, since the circumstances 
under which we can either decompose the 

population into groups with the same p, or 

alternately, estimate the variance of p, are 

extremely unusual. Assuming that we are 
usually dealing with populations in which p has 

some unknown distribution, our predicted 
variances based on the simple binomial model 

seem doomed to be over -estimates. 

SUMMARY AND CONCLUSIONS 

This paper has explored the estimation of 
random variation in rates based on total 

enumeration of events. It is not concerned 
with variations due to sampling and response 
errors. Assessment of random variation in 

rates is necessary to detect changes with time 
as well as differentials in rates between 

regions or groups. It is necessary to determine 
minimum sample size needed to detect change or 
differentials, or minimum change in rates 

which cannot be attributed to random factors. 
It it necessary in establishing the size of 
statistical reporting units which will provide 
sufficiently stable rates for various purposes. 

Several measures of random variation are 
presented. The variance generated by the most 

widely used binomial model displayed smaller 
values than any of those generated by our 
empirical data. We have identified difficult - 

to- eliminate sources of random variance which 
may make any empirically derived variance 
estimates substantially larger than those 
predicted by the binomial model. The use of 

the binomial model to estimate predicted 
variances against which to test null hypotheses 

can therefore be expected routinely to result 

in the rejection of null hypotheses which 

should in fact have been accepted. It will 

therefore lead to nonconservative assertions 
of true differences in rates where none in 

fact exist. If the experience with birth 

rates in other populations and the experience 
with other types of rates is similar to that 
we have presented, conservative inferences 

will require estimates of predicted variances 

made from detailed data on the actual population 
being studied. 

APPENDIX A 
Measures of Random Variation 

Let btk denote the rate at time t (t = 1,2, 

. . .$) and for unit k (k = 1,2, . . .R). 

The following measures of random variation 
can be obtained. 

Assumption 1. Rates are time homogeneous 

A measure of random variation for unit k is 

given by (A. 1) 52lk 1 

"btk bk )2, when 
s -1 

bk = Et) 

s 
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Assumption 2. Rates are time and unit homogeneous 

The following measures of random variations 

can be constructed. 

(A.2) = 
(btk 

when = 1 

Rs tk 

EEbtk 

2 
(A.3) S3 

(A.4) = ESlk)2 

Assumption 3. Assume that the rates change with 

time. bt,k = Bo,k + B1,kt + B2Kt2 
+ ...+ B2kth 

+ Ek, when Ek is N(0, a2). 

Then an estimate of the variance of observed 

bt,k is given by the mean square error for the 

deviation from the best fitted regression line. 

If all units are assumed to be homogeneous, 
then an improved estimate can be obtained by 

taking an average of the standard error obtained 
for each region. 

Assumption 4. Rates are not homogeneous with 
respect to time and region. In this case, it is 

better to eliminate region and time effects from 
the total variation of the rates. This can be 

done using the analysis of variance technique. 
Using orthogonal polynomials one can also test 
for the linear, quadratic, cubin etc.. time trends 
of the rates. (For alstandard reference, see 
Snedecor and Cochran. ) 

An estimate of the variance of the rate is 

obtained from the mean squares due to error in 

the analysis of variance table. 

APPENDIX B 

Variance in Binomial Model 

Assume that p is the probability of occurrence 
of an event in a year for a member of the 
population. Then, for a population of size N, 
the observed rate will have an expected value of 
p, and variance p(1 -p) /N. 

Now assume that p varies among women with mean 

value of p* and variance al. Then, it can be 

shown that the observed rate has an expected 

value of p* and variance equal to 

= 1 [Np* (1 - p *) + N(N - 1) GP] 

N2 

Note that, when N is large, the second term of 
the sum does not disappear. 
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TABLE 1. Estimated standard errors of birth rates based on binomial model 

Data source 

Population size 
category 

Number 
of 

units 

Average 
crude Estimated Coefficient 

birth rate standard error of variation 

Costa Rica 

North Carolina 

Taiwan 

0 - 5,000 
5 - 10,000 

10 - 15,000 
15 - 20,000 
20 - .30,000 

30 - 40,000 

40 - 50,000 

0 - 5,000 
5 - 10,000 

10 - 15,000 
15 - 20,000 
20 - 30,000 
30 - 40,000 
40 - 50,000 

0 - 5,000 
5 - 10,000 

10 - 15,000 
15 - 20,000 
20 - 30,000 
30 - 40,000 
40 - 50,000 

4 

12 

22 

7 

6 

2 

4 

22 

11 

10 

12 

17 

7 

9 

14 

10 

12 
19 
20 

9 

7 
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23.6 
29.5 
32.4 

34.4 
32.0 
33.6 

34.6 

22.9 

16.2 
16.4 
17.2 

17.9 
18.0 
17.7 

33.2 

29.7 
29.7 
29.3 
28.0 
28.9 
29.2 

2.215 
1.903 
1.526 
1.360 
1.050 
.942 

.820 

2.894 
1.487 

1.101 
.946 

.818 

.703 

.610 

3.010 

1.934 
1.455 
1.263 
1.045 
.856 
.785 

9.4% 
6.5% 

. 4.7% 
4.0% 
3.3% 
2.8% 
2.4% 

12.6% 
9.2% 
6.7% 
5.5% 
4.6% 
3.9% 
3.4% 

9.1% 

6.5% 
4.9% 
4.3% 
3.7% 
3.0% 
2.7% 



TABLE 2. Observed standard errors of birth rates 

Number Average 
Population size of crude Average Coefficient 

Data source category units birth rate standard error of variation 

Costa Rica 0 - 5,000 4 23.6 4.375 18.5% 

5 - 10,000 12 29.5 4.782 16.2% 

10 - 15,000 22 32.4 3.593 11.1% 

15 - 20,000 7 34.4 3.577 10.4% 

20 - 30,000 6 32.0 3.485 10.9% 

30 - 40,000 2 33.6 2.910 8.7% 

40 - 50,000 4 34.6 5.551 16.0% 

North Carolina 0 - 5,000 22 22.9 4.799 21.0% 

5 - 10,000 11 16.2 1.807 11.2% 

10 - 15,000 10 16.4 1.832 11.2% 

15 - 20,000 12 17.2 1.963 11.4% 

20 - 30,000 17 17.9 1.131 6.4% 

30 - 40,000 7 18.0 1.133 6.3% 

40 - 50,000 9 17.7 0.976 5.5% 

Taiwan 0 - 5,000 14 33.2 4.082 12.3% 

5 - 10,000 10 29.7 3.171 10.7% 

10 15,000 12 29.7 2.338 7.9% 

15 - 20,000 19 29.3 2.951 10.1% 

20 - 30,000 20 28.0 2.649 9.5% 
30 - 40,000 9 28.9 2.217 7.7% 
40 - 50,000 7 29.2 2.345 8.0% 

TABLE 3. Observed standard errors of estimate of birth rates eliminating linear trends 

Number Average Average 
Population size of crude standard error Coefficient 

Data source category units birth rate of the estimate of variation 

Costa Rica 

North Carolina 

Taiwan 

0 - 5,000 4 23.6 2.496 10.5% 

5 - 10,000 12 29.5 2.438 8.3% 

10 - 15,000 22 32.4 2.344 7.2% 

15 - 20,000 7 34.4 2.397 7.0% 
20 - 30,000 6 32.0 1.611 5.0% 

30 - 40,000 2 33.6 1.322 3.9% 

40 - 50,000 4 34.6 1.758 5.1% 

0 - 5,000 22 22.9 3.910 17.1% 

5 - 10,000 11 16.2 1.564 9.7% 

10 - 15,000 10 16.4 1.444 8.8% 

15 - 20,000 12 17.2 1.552 9.0% 

20 - 30,000 17 17.9 0.987 5.5% 

30 - 40,000 7 18.0 1.062 5.9% 

40 - 50,000 9 17.7 0.806 4.6% 

0 - 5,000 14 33.2 3.667 11.0% 

5 - 10,000 10 29.7 2.167 7.3% 

10 - 15,000 12 29.7 1.463 4.9% 

15 - 20,000 19 29.3 1.731 5.9% 

20 - 30,000 20 28.0 1.258 4.5% 

30 - 40,000 9 28.9 1.230 4.3% 

40 - 50,000 7 29.2 1.140 3.9% 

TABLE 4. Observed standard errors of estimate for Taiwan birth rates eliminating time and unit effects 

Population size 
category 

Number of 
units 

Average 
crude birth rate 

Standard 
error 

Coefficient 
of variation 

0 - 5,000 14 33.2 3.558 10.7% 

5 - 10,000 10 29.7 2.147 7.2% 

10 - 15,000 12 29.7 1.390 4.7% 

15 - 20,000 19 29.3 1.718 5.9% 

20 - 30,000 20 28.0 1.533 5.5% 

30 - 40,000 9 28.9 1.290 4.5% 

40 - 50,000 7 29.2 1.365 4.7% 

371 


